3 research outputs found

    Integrated Spatio-Temporal Deep Clustering (ISTDC) for cognitive workload assessment

    Get PDF
    Traditional high-dimensional electroencephalography (EEG) features (spectral or temporal) may not always attain satisfactory results in cognitive workload estimation. In contrast, deep representation learning (DRL) transforms high-dimensional data into cluster-friendly low-dimensional feature space. Therefore, this paper proposes an Integrated Spatio-Temporal Deep Clustering (ISTDC) model that uses DRL followed by a clustering method to achieve better clustering performance. The proposed model is illustrated using four Algorithms and Variational Bayesian Gaussian Mixture Model (VBGMM) clustering method. Temporal and spatial Variational Auto Encoder (VAE) models (mentioned in Algorithm 2 and Algorithm 3) learn temporal and spatial latent features from sequence-wise EEG signals and scalp topographical maps using the Long short-term memory and Convolutional Neural Network models. The concatenated spatio-temporal latent feature (mentioned in Algorithm 4) is passed to the VBGMM clustering method to efficiently estimate workload levels of -back task. For the 0-back vs. 2-back task, the proposed model achieves the maximum mean clustering accuracy of 98.0%, and it improves by 11.0% over the state-of-the-art method. The results also indicate that the proposed multimodal approach outperforms temporal and spatial latent feature-based unimodal models in workload assessment

    3D Avatar Approach for Continuous Sign Movement Using Speech/Text

    No full text
    Sign language is a visual language for communication used by hearing-impaired people with the help of hand and finger movements. Indian Sign Language (ISL) is a well-developed and standard way of communication for hearing-impaired people living in India. However, other people who use spoken language always face difficulty while communicating with a hearing-impaired person due to lack of sign language knowledge. In this study, we have developed a 3D avatar-based sign language learning system that converts the input speech/text into corresponding sign movements for ISL. The system consists of three modules. Initially, the input speech is converted into an English sentence. Then, that English sentence is converted into the corresponding ISL sentence using the Natural Language Processing (NLP) technique. Finally, the motion of the 3D avatar is defined based on the ISL sentence. The translation module achieves a 10.50 SER (Sign Error Rate) score

    A multimodal-Siamese Neural Network (mSNN) for person verification using signatures and EEG

    Get PDF
    Signatures have long been considered to be one of the most accepted and practical means of user verification, despite being vulnerable to skilled forgers. In contrast, EEG signals have more recently been shown to be more difficult to replicate, and to provide better biometric information in response to known a stimulus. In this paper, we propose combining these two biometric traits using a multimodal Siamese Neural Network (mSNN) for improved user verification. The proposed mSNN network learns discriminative temporal and spatial features from the EEG signals using an EEG encoder and from the offline signatures using an image encoder. Features of the two encoders are fused into a common feature space for further processing. A Siamese network then employs a distance metric based on the similarity and dissimilarity of the input features to produce the verification results. The proposed model is evaluated on a dataset of 70 users, comprised of 1400 unique samples. The novel mSNN model achieves a 98.57% classification accuracy with a 99.29% True Positive Rate (TPR) and False Acceptance Rate (FAR) of 2.14%, outperforming the current state-of-the-art by 12.86% (in absolute terms). This proposed network architecture may also be applicable to the fusion of other neurological data sources to build robust biometric verification or diagnostic systems with limited data size
    corecore